Nov 29, 2021  
2008-2009 Graduate Catalog 
2008-2009 Graduate Catalog [ARCHIVED CATALOG]


Return to {$returnto_text} Return to: Graduate Programs and Certificates

The Department of Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees. A wide range of research projects is available in analytical, inorganic, materials, organic, physical and wood chemistry. In addition, many of our faculty are actively engaged in interdisciplinary research projects.

The general requirements for admission to programs leading to advanced degrees are described in the general section of this catalog. Candidates for advanced degrees in the Department of Chemistry normally are expected to have completed the minimum undergraduate program established by the American Chemical Society Committee on Professional Training.

The graduate program in chemistry may include any chemistry courses numbered above 500, along with certain courses numbered between 400 and 500 if approved by the student’s advisory committee, or in the first semester of study, by the graduate executive committee of the department. Graduate courses in chemistry include advanced analytical techniques, synthesis, and reaction mechanisms in organic chemistry, molecular modeling and computer simulation methods, physical inorganic and inorganic reaction mechanisms, organometallics, quantum mechanics, molecular spectroscopy and statistical thermodynamics, and wood chemistry. Special topics courses and seminar courses are also offered. Suitable courses in other departments such as Biochemistry, Chemical Engineering, Geology, Mathematics, or Physics may also be included in a student’s program of study. Thesis-based research is an integral part of the student’s training. Research normally comprises about one-half of the 30 semester hours required in a master’s degree program and about two-thirds of the work in a doctoral program.

Placement examinations are given to each entering graduate student and are used as a guide in determining the program of study. Comprehensive examinations are part of the doctoral program as described in the general regulations of the Graduate School.

Graduate assistants usually require two years to complete the requirements for a master’s degree. The minimum time for completion of requirements for the doctorate is six semesters of full-time study and research beyond the bachelor’s degree. Four years usually are required.

Graduate assistantships are available to qualified students.

The Five-Year BS-MS degree program allows highly qualified undergraduates of The University of Maine to earn Bachelor of Science and Master of Science degrees in five years instead of the normal six-year period. It is designed for a small number of very able students who wish to prepare for graduate school or medical school, or for direct employment where a master’s degree has become a distinct advantage in seeking professional positions in industry. Some electives for the bachelor’s degree are replaced by courses in chemistry, which count toward the graduate degree. Further information about research projects and curriculum requirements is available from the Chair of the Chemistry Department and the department web site:


Graduate Faculty

François G. Amar, Ph.D. (Chicago, 1979), Associate Professor. Computer simulation of reaction dynamics in molecular and ionic clusters, theory of melting, properties of Van der Waals clusters, mixed quantum/classical dynamics.

Alice E. Bruce, Ph.D. (Columbia Univ., 1985), Associate Professor and Interim Chair. Inorganic, organometallic and bioinorganic chemistry; synthesis, structure and reactivity of gold(I) complexes; metal-containing liquid crystals; formation and reactivity of gold clusters.

Mitchell R. M. Bruce, Ph.D. (Columbia Univ., 1985), Associate Professor. Inorganic chemistry, reaction mechanisms, chemical and electrochemical redox processes, gold(I) sulfur chemistry, mercury electrochemistry, activation of small molecules, electronic structure and reaction pathways of bioinorganic and organometallic complexes.

Barbara J. W. Cole, Ph.D. (Washington, 1986), Professor. Wood and paper chemistry, carbohydrates, lignin, biologically active plant extracts.

Scott D. Collins, Ph.D. (Brigham Young Univ., 1980), Professor and Member, Laboratory for Surface Science and Technology (LASST). Microfabrication and sensors, electrochemistry of semiconductors, spectroscopy and fractal phase transitions.

Raymond C. Fort, Jr., Ph.D. (Princeton, 1964), Professor. Computational organic and biochemistry; wood chemistry.

Brian G. Frederick, Ph.D. (Cornell, 1991), Associate Professor and Member, LASST. Surface chemistry and physics of semiconducting oxide sensors and molecular electronics.  High throughput time-of-flight electron and mass spectrometer development.

Bruce L. Jensen, Ph.D. (Western Michigan, 1970), Associate Professor. Synthesis of heterocyclic and natural products of medicinal interest. Study of halonium ion rearrangements and chiral allylsilicon reagents. Curriculum development in the undergraduate organic laboratory.

Howard H. Patterson, Ph.D. (Brandeis, 1968), Professor. Inorganic, bioinorganic and environmental chemistry. Photocatalytic reactions with silver doped zeolites. Clustering and exciplex behavior of gold (I) and silver (I) complexes. Optical Memory.

Jayendran C. Rasaiah, Ph.D. (Pittsburgh, 1965), Professor. Statistical mechanics of electrolytes and polar fluids. Computer simulation studies of solutions. Fluctuation dominated kinetics in heterogeneous media. Theory of electron transfer reactions. Molecular biophysical chemistry.

Touradj Solouki, Ph.D. (Texas A & M, 1994), Associate Professor. Structural and conformational mass spectrometry by H/D exchange kinetics and electrospray ionization (ESI) FT ion cyclotron resonance (FT-ICR), biomedical and environmental X-Omics, GC/FT-ICR MS, complex sample characterization and biomarker identification.

Carl P. Tripp, Ph.D. (University of Ottawa, 1988), Professor and Member, LASST. Surface chemistry of materials, infrared and Raman spectroscopy, chemical sensors, biosensors, sol-gel synthesis of metal oxides, polyelectrolyte/surfactant adsorption on surfaces, silane reactions on metal oxides, molecular studies of paper coatings, electroluminescent devices, supercritical fluids.

Return to {$returnto_text} Return to: Graduate Programs and Certificates