Dec 13, 2019  
2003-2004 Graduate Catalog 
    
2003-2004 Graduate Catalog [ARCHIVED CATALOG]


Civil Engineering



Return to {$returnto_text} Return to: Graduate Degree Programs

The Department of Civil and Environmental Engineering offers the Master of Science, and Doctor of Philosophy degrees. Areas of study include Environmental and Water Resources Engineering, Geotechnical Engineering, and Structural Engineering and Mechanics at the master’s and doctoral levels.

Environmental and Water Resources Engineering

The Environmental and Water Resource Engineering area focuses on quantitative and qualitative aspects of marine and inland surface waters, groundwaters and wetland environments. The program allows for study in environmental engineering, surface and groundwater hydrology and water quality control, hazardous waste remediation, coastal and estuarine hydrodynamics, and coastal engineering. An interdisciplinary approach, intersecting with other departments’ related programs is encouraged.

 The University of Maine is fortunate to be located in a region having an extensive and diverse system of natural ponds, lakes, streams, and rivers. The area also has an extensive coastal region with a 3,000 mile shoreline. This forms a labyrinth of deep water estuaries, coves, rocky headlands, and coastal islands. The State’s future economic development will be heavily tied to the intelligent use of its surface and groundwaters as a resource in itself and in conjunction with its forest, agricultural, fishing, and tourism industries. The vast collection of natural water bodies in Maine provides one of the finest outdoor laboratories in the world for basic and applied research involving the understanding of the physical, chemical, and biological processes that occur in natural water, and in our influence upon its quality and quantity.

A program of study can be planned in one of the following areas:

Environmental engineering: Industrial wastes water supply wastewater treatment; hazardous wastes; physical, chemical and biological aspects of water quality; freshwater and marine pollution control, modeling.

Physical behavior of water: Surface and groundwater hydrology, coastal and estuarine hydrodynamics, modeling.

Geotechnical Engineering

The graduate program in Geotechnical Engineering provides specialized training and research in soil mechanics, use of waste materials, foundation engineering, design of earth structures, soil-structure interaction including various soil reinforcements, and ground water movements through and around earth structures. The program may be oriented toward professional practice or research applied to practical engineering problems.
Research opportunities are available utilizing field monitoring, laboratory investigations and finite element analyses in properties and use of waste materials in embankments and walls, behavior of soft and stiff clays, soil structure interaction of piles and soil nail walls, thermal behavior of walls and embankments, utilization of fiber reinforced plastics in geotechnical applications, earth reinforcement for embankments, and application of reliability to geotechnical engineering.

Graduate courses are offered in advanced soil properties, shallow and deep foundations, earthwork design, earth retaining structures, thermal soil mechanics, subsurface investigations, waste geotechnics, and ground improvement techniques. Students in geotechnical engineering usually work closely with faculty in the structural and environmental programs offered by the Department.

Structural Engineering and Mechanics

The program offers graduate courses and opportunities for advanced research in several areas of modern structural mechanics and design.
These areas cover timber and concrete bridges and structures, finite element analysis, fatigue of bridge connections, elastic stability, the nonlinear behavior, and civil engineering applications. The program also offers opportunities for research in the area of probability based design criteria.
Required graduate courses and seminars are offered in the C.E. and M.E. departments and these cover the areas of structural dynamics, elasticity, stability, nonlinear elastic behavior, elastic plastic behavior, stability of structural systems, probabilistic design and related topics. The program is research oriented but sufficiently flexible to permit students to develop their interests and individual objectives.

General Information

Applicants for the M.S. program normally should have a B.S. degree in Civil Engineering from an accredited institution. Applicants who do not meet this requirement may find it necessary to take certain courses without graduate credit. A grade point average of at least 3.0 usually is required for admittance. Candidates with a grade point average less than 3.0 can be accepted, based on sufficient evidence of satisfactory performance.

Candidates for the M.S. degree are required to take 24 credit hours of course work, 12 of which are to be 500-level and above. A thesis is required for which at least six credit hours can be awarded. Candidates for the non-thesis M.S. degree are required to take 30 credit hours of course work and an oral examination to be taken near the end of the program. Three hours of non-thesis M.S. course work can be replaced by a project with a written report. Students changing programs within the Department must have the approval of the Departmental graduate faculty committee.

The Ph.D. degree is granted in recognition of high scholastic attainment in some area of civil engineering in concert with a demonstrated ability for independent research. The preparation and defense of a thesis embodying the results of an original investigation in a specialized area of civil engineering are essential features of the program. The program for the Ph.D. carries a minimum residency requirement of two academic years and a course credit requirement of 42 credit hours, or the equivalent, beyond the bachelor’s degree. Transfer credit of up to 24 credit hours and one academic year of residency may be accepted. In view of the wide variety of specialized areas embodied in Civil and Environmental Engineering, each program of course work will be established by the student and the student’s committee. To attain the academic breadth necessary in the doctoral program, it also is required that all students complete an approved minor program consisting of at least nine credit hours of course work outside the major area of specialty. Before admission to candidacy for the Ph.D., a student must complete successfully a qualifying examination designed to test the student’s area of expertise. The qualifying examination normally will be taken as soon as possible after the student has completed the graduate school requirement of one and one-half years of study beyond the bachelor’s degree. No foreign language requirement is included in the program.

Financial assistance is available for graduate students from several sources, including teaching and research assistantships.

Graduate Faculty

Dana N. Humphrey, Ph.D. (Purdue, 1986), Professor and Chair. Geotechnical engineering, reinforced embankments, soil stabilization, behavior of stiff clay, use of waste materials in construction.

John A. Alexander, Ph.D. (Massachusetts Institute of Technology, 1970), Professor Emeritus. Engineering materials, infrastructure rehabilitation, engineering ethics.

Aria Amirbahman, Ph.D. (California, Irvine, 1994), Assistant Professor. Environmental chemistry, process dynamics and solute transport.

Willem F. Brutsaert, Ph.D. (Colorado State, 1970), Professor . Groundwater hydrology, mathematical modeling of hydrodynamic systems, water resources and water quality modeling.

Habib J. Dagher, Ph.D. (Wisconsin, 1985), Professor. Probabilistic mechanics, timber structures, advanced wood composites, concrete structures, bridges.

William G. Davids, Ph.D. (University of Washington, 1998), Assistant Professor. Structural engineering and computational mechanics; numerical modeling and finite element analysis; bridge design.

Per Garder, Ph.D. (Lund University, 1982), Professor. Transportation planning; forecasting, design & evaluation with emphasis on traffic safety & environmental aspects.

Eric N. Landis, Ph.D. (Northwestern University, 1993), Associate Professor. Experimental mechanics, nondestructive evaluation, fracture, microstructure-property relationships for construction materials.

Roberto Lopez-Anido, Ph.D., P.E., (West Virginia University, 1995), Assistant Professor. Mechanics of polymer matrix composites for infrastructure; modeling, design and experimental characterization of advanced composite systems; fatigue and durability of composite materials for construction; engineered wood composites; methods of structural analysis.

Jean MacRae, Ph.D. (University of British Columbia, 1997), Assistant Professor. Biological treatment of solid wastes for resource recovery, bioremediation, environmental microbiology.

Vijay Panchang, Ph.D. (Maine, 1985), Cooperating Professor. Mathematical modeling waves, tides, diffusion, coastal engineering, bridge hydraulics.

Bryan R. Pearce, Ph.D. (Florida, 1972), Professor. Coastal engineering, estuarine hydrodynamics and material transport, hydraulics.

Chet A. Rock, Ph.D. (Washington, 1974), Professor and Associate Dean, College of Engineering. Water quality, ecological effects of pollutants, wastewater treatment.

Thomas C. Sandford, Ph.D. (Illinois, 1976), Associate Professor. Geotechnical engineering; soil/structure interaction including piles, culverts, and abutments; soil-nail walls; reliability based design; soft clay behavior; and field monitoring.

Associate Faculty

Lynn E. Katz, Ph.D. (University of Michigan, 1994), Associate Professor. Environmental engineering, physical-chemical processes, pollutant fate and transport.

Richard Wardwell, Ph.D. (Colorado State, 1980), Associate Professor, Geotechnical engineering, pollution remediation practices, hazardous waste management.

Return to {$returnto_text} Return to: Graduate Degree Programs